

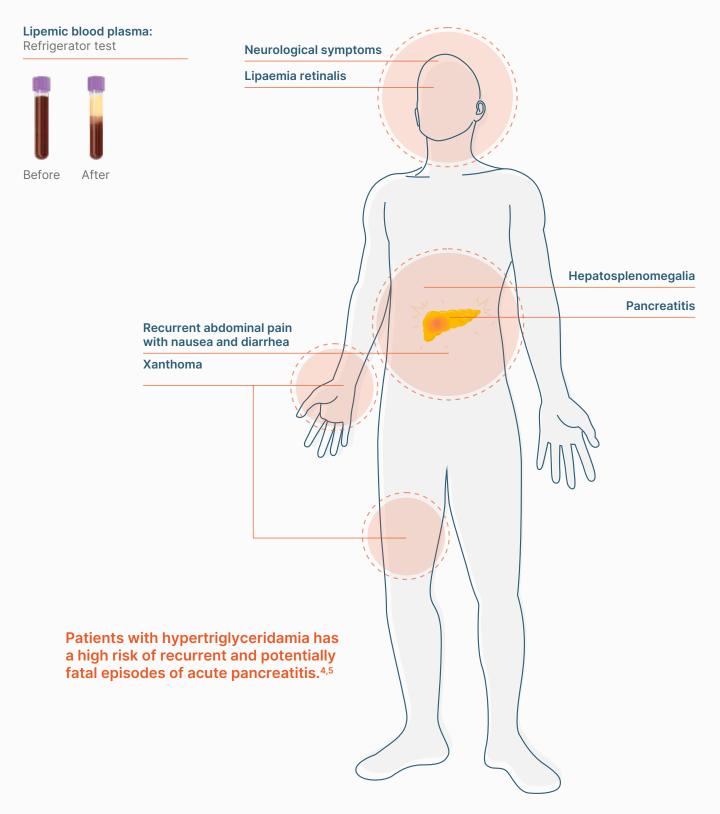
Using genetics for diagnosis

Step by step to diagnosis

FCS diagnosis is based on a four-step approach:

- 1 Suspected hypertriglyceridemia
- 2
- Verification of the suspicion

Confirmation of the suspicion by using genetic testing



Distinction between monogentic vs. polygenic hypertriglyceridemia

Moderate:¹triglycerides (TG) 200-885 mg/dl (2-9,9 mmol/l) **Severe:**¹triglycerides (TG) >885 mg/dl (>10 mmol/l)

Severe hypertriglyceridemia/chylomicronemia can lead to the following symptoms:^{2,3}

2 Verification of the suspicion

Basic diagnostics for suspected lipid metabolism disorders:6

- Triglycerides total
- Cholesterol HDL
- Cholesterol
- Non-HDL cholesterol

- LDL cholesterol
- Lipoprotein (a) (at least once), especially in diabetes mellitus, metabolic syndrome
- Apolipoprotein B

TG > 400 mg/dl (4.5 mmol/l): Additional lipid electrophoresis⁶ TG > 885 mg/dl (10 mmol/l): Diagnosis score for familial chylomicronemia syndrome (FCS score):⁷

•

•

- 1. Fasting TG levels >885mg/dl or 10 mmol/L for 3 consecutive blood analyses Fasting TG > 1,750 mg/dl (20 mmol/l)) at least once (+1)
- 2. Previous TG < 175 mg/dl (< 2 mmol/dl) (-5)
- 3. no secondary factors^b (except pregnancy^c and ethinylestradiol)(+2)
- 4. History of pancreatitis (+1)
- 5. unexplained recurrent abdominal pain (+1)
- 6. no history of familial combined hyperlipidemia (+1)
- 7. No response (TG decrease < 20 %) to lipid-lowering therapy (+1)
- 8. Onset of symptoms at the age of
 - < 40 years (+1)
 - < 20 years (+2)
 - < 10 years (+3)

FCS score:

- ≥ 10: FCS very likely
- ≤ 9: FCS unlikely
- < 8: FCS very unlikely

"FCS score" > 7 points; consider genetic testing⁸

3

Important genes and proteins in the metabolism of TG-rich lipoproteins⁹

Protein	Functions and regulation	In case of defect/deficiency or inhibition

Degradation proteins and cofactors (deficiency leads to an increase in TG-rich proteins)

Lipoprotein lipase (LPL) ¹⁰⁻¹⁶	 Hydrolysis of triglycerides in chylomicrons and VLDL and peripheral uptake of FFS is activated by APO A5 and APO C2 is inhibited by APO C1, APO C3 and ANGPTL 3, 4 and 8 	 Severe monogenic HTG with chylomicronemia and elevated VLDL Increased risk of acute pancreatitis Early manifestation in infancy and childhood
Glycosyl-Phosphatidyl- Inositol cored High density Lipoprotein Binding Protein (GPIHBP1) ¹⁶⁻²¹	 Endothelial LPL transport protein stabilizes the binding of chylomicrons supports lipolysis 	 Severe monogenic HTG with chylomicronemia Late manifestation due to autoantibodies possible in adulthood
Apolipoprotein C2 (APO C2) ^{10, 22}	Cofactor of the LPLactivates LPL	 Severe monogenic HTG with chylomicronemia and elevated VLDL Early manifestation in infancy and childhood
Apolipoprotein A5 (APO A5) ^{23, 24}	Cofactor of the LPLAmplifier of the LPL activity	• Severe monogenic HTG with chylomicronemia
Lipase Maturation Factor - 1 (LMF1) ^{25, 26}	 Chaperone, mediates folding of LPL in adipocytes and myocytes 	Severe monogenic HTG with chylomicronemia
Glycerol-3-phosphate dehydrogenase 1 (GPD-1) ²⁷	 Degradation of glycerol-3-phosphate, the starting product of TG synthesis 	Severe monogenic HTG due to increased TG synthesis
Hepatic lipase (HL) ²⁸	 Hydrolysis of triglycerides, phospholipids Conversions from VLDL to LDL and from large HDL to small HDL Mixed hyperlipidemia Accumulation of remnants 	
 Apolipoprotein E (APO E)^{29, 30} Ligand for the LDL receptor and LRP-1 activates LCAT Lipid transport in the brain Support of LDL-mediated uptake and elimination of chylomicron remnants 		Increased risk of Alzheimer's disease (APO E4
CAMP Responsive Element Binding Protein-3-Like-3 (CREB3L3) ^{31, 32}	• Iranscription factor in the liver that • Severe hypertrigiycerideemia	
Glucokinase regulatory protein (GCKR) ^{31, 33}	Regulation of the activity of the enzyme glucokinase in the liver	Severe hypertriglyceridemia

Monogenic and polygenic forms of severe hypertriglyceridemia

Monogenic HTG

Polygenic HTG

Degradation proteins and cofactors (deficiency leads to an increase in TG-rich proteins)

Former designations		Mixed dyslipidemia, hyperlipoproteinemia	
Main lipoprotein disorder	type 1 (WHO) type 5 (WHO) Variable increase in TG-rich lipoproteins: Chylomicrons, VLDL, chylomicron remnants and VLDL remnants		
Ass. Lipoprotein disorders	Reduction of LDL and HDL		
Typical start	Childhood or adolescence	Adulthood	
Clinical features	 early recurrent pancreatitis Failure to thrive Abdominal pain Nausea Vomiting Eruptive xanthomas Lipaemia retinalis Hepatosplenomegaly 	 Abdominal pain Nausea Vomiting Eruptive xanthomas (rarer) Lipaemia retinalis (rarer) Pancreatitis (~1% risk per year) 	
Cardiovascular risk	Only slightly increased	Some indications of increased risk	
Prevalence rate	Rare, ~1:100,000 to ~1:1,000,000	Frequent, ~1:600	
Influence of non-genetic factors on the phenotype	Low	High	
Inheritance pattern	Autosomal recessive, occasionally autosomal co-dominant	Familial clustering, but no classic Mendelian inheritance	
Genetic causes	 Mutations in LPL, APO A5, APO C2, CREB3L3, GCKR, GPD-1²⁷, GPIHBP1, LMF-1. Others could be identified in the future. 	 Heterozygous rare variants in LPL, APO A5, APO B, APO C2, APO C3, APO E, CREBH, GCKR, GPD-1, GPIHBP1 and LMF-1 with large phenotypic effects Common variants (genetic polymorphisms, SNPs*) with small effects in ~40 genes identified in genome-wide association studies 	
Therapy goal	 Prevention of recurrent pancreatitis and its consequences. 	 Prevention of recurrent pancreatitis and its consequences Reduction of the cardiovascular risk 	

Table modified and supplemented according to Brahm (2015)⁹ * SNPs = single nucleotide polymorphism = susceptibility variants = polymorphisms

Genetic causes of HTG^{7, 32, 34}

Influencing factors	Gene	Inheritance pattern	Possible diagnosis
Constant heavy HTG	LPL, APO A5, APO C2, CREB3L3, GCKR, GPD-1, GPIHBP1, LMF-1:	Homozygous mutation Combined heterozygous mutation Heterozygous co-dominant mutation	Monogenic HTG, also known as familial chylomicronemia syndrome: The genetic load is high enough to cause constant HTG, regardless of other factors such as additional mutations or lifestyle factors.
Non-genetic factors*	LPL, APO A5, APO C2, APO C3, APO E, CREB3L3, GCKR, GPD-1, GPIHBP1, LMF-1:	Heterozygous mutation with major metabolic effects + SNPs** Combination of common SNPs** or genetic polymorphisms with small effects in ~40 genes Sporadic severe HTG	Polygenic HTG, also known as multifactorial chylomicronemia syndrome: ^{9,32,34} A single mutation is not sufficient to cause a clinical phenotype. The severity of HTG is determined by cumulative/interactive effects of several genetic risk variants.***

* Lifestyle factors, medication and concomitant diseases; ** SNPs = single nucleotide polymorphism = susceptibility variants = polymorphisms *** These risk variants include both heterozygous rare variants with major metabolic effects and common variants polymorphisms) with minor effects. These mutations occur in combination with TG-increasing SNPs. A large number of SNPs with an effect on TG can also lead to polygenic HTG on their own.

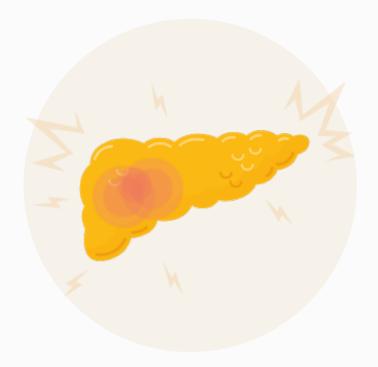
Term	Definition
Homozygous Mutation	A genetic condition where an individual has two copies of the same mutated gene, one inherited from each parent.
Combined Homozygous Mutation	This occurs when an individual has two different mutations, one on each copy of gene, inherited from each parent.
Heterozygous Co-dominant Mutation	A situation where two different alleles (versions of a gene) are present, and both contribute to the phenotype.
Heterozygous Mutation with major Metaboic Effects+SNPs	A single allele mutation that has a significant impact on metabolism, often combined with single nucleotide polymorphisms (SNPs) that can either exacerbate or mitigate the metabolic effects.
Combination of Common SNPs or Genetic Polymorphisms with small Effects	Multiple SNPs or genetic variations that each have a small effect on their own, but whe combined, can have a significant impact on a trait or condition.

Therapeutic approach for patients with severe HTG^{1, 35}

Triglycerides < 10 mmol/l (885 mg/dl)

Primary goal:

cardiovascular risk reduction


- Depending on the overall risk, consider further reduction of non-HDL-C
- Consider further LDL-C reduction

Primary goal:

prevention of pancreatitis

- TG reduction < 10 mmol/l (885 mg/dl) or below the individual pancreatitis threshold
- Involve lipidologists

References

- 1. Laufs U, et al. A Clinical review on triglycerides. Eur Heart J. 1;41(1):99-109c (2020).
- 2. Brunzell JD, Bierman EL. Chylomicronemia syndrome: interaction of genetic and acquired hypertriglyceridemia. Med Clin North Am. 66(2):455-68 (1982).
- Davidson M, et al. The burden of familial chylomicronemia syndrome: Results from the global IN-FOCUS study. J Clin Lipidol. 12(4):898-907 (2018).
 Nawaz H, et al. Elevated serum triglycerides are independently associated with persistent organ failure in acute pancreatitis. Am J Gastroenterol. 2015;110:1497-503.
- Gaudet D, et al. Targeting APOC3 in the Familial Chylomicronemia Syndrome. N Engl J Med. 2014;371:2200-6.
- März W et al. Labordiagnostik von Fettstoffwechselstörungen. Dtsch Med Wochenschr 2023; 148: e120-e145
- Moulin P, et al. Identification and diagnosis of patients with familial chylomicronaemia syndrome (FCS): expert panel recommendations and proposal of an "FCS score". Atherosclerosis. 275:265-72 (2018).
- 8. Bashir et al. Atherosclerosis 391 (2024) 117476, https://doi.org/10.1016/j.atherosclerosis.2024.117476
- 9. Brahm AJ, Hegele RA. Chylomicronaemia-current diagnosis and future therapies. Nat Rev Endocrinol; 11: 352-362. (2015).
- 10. Gotoda T, et al. Diagnosis and management of type I and type V hyperlipoproteinemia J Atheroscler Thromb. 19: 1-12 (2012).
- 11. Martín-Campos JM et al. Molecular analysis of chylomicronemia in a clinical laboratory setting: diagnosis of 13 cases of lipoprotein lipasedeficiency. Clin Chim Acta. 429: 61-68 (2014).
- 12. Jap TS, et al. Mutations in the lipoprotein lipase gene as a cause of hypertriglyceridemia and pancreatitis in Taiwan. Pancreas. 27: 122-126 (2003).
- 13. Murthy V, Julien P, Gagné C. Molecular pathobiology of the human lipoprotein lipase gene. Pharmacol Ther; 70: 101-135 (1996)
- 14. Sukonina V, et al. Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue. Proc Natl Acad Sci USA 2006;103(46):17450-17455 (2006).
- 15. Wen Y, Chen YQ, Konrad RJ. Angiopoietin-like protein 8: a multifaceted protein instrumental in regulating triglyceride metabolism. Curr Opin Lipidol (2023).
- 16. Beigneux A P, et al. Chylomicronemia with a mutant GPIHBP1 (Q115P) that cannot bind lipoprotein lipase. Arterioscler. Thromb. Vasc. Biol. 29, 956-962 (2009).
- 17. Beigneux A. P. GPIHBP1 and the processing of triglyceride-rich lipoproteins. Clin. Lipidol. 5, 575-582 (2010).
- Olivecrona G, et al. Mutation of conserved cysteines in the Ly6 domain of GPIHBP1 in familial chylomicronemia. J. Lipid Res. 51, 1535-1545 (2010).
 Gin P, et al. Chylomicronemia mutations yield new insights into interactions between lipoprotein lipase and GPIHBP1. Hum. Mol. Genet. 21, 2961-2972 (2012).
- 20. Rios J, et al. Deletion of GPIHBP1 causing severe chylomicronemia. J. Inherit. Metab. Dis. 35, 531-540 (2012).
- 21. Jiang S, Ren Z, Yang Y, Liu Q, Zhou S, Xiao Y. The GPIHBP1-LPL complex and its role in plasma triglyceride metabolism: Insights into chylomicronemia. Biomed Pharmacother.31;169:115874 (2023).
- 22. Okubo M, et al. Apolipoprotein C- II: a novel large deletion in APOC2 caused by Alu-Alu homologous recombination in an infant with apolipoprotein C- II deficiency. Clin. Chim. Acta 438, 148-153 (2014).
- 23. Albers K, et al. Homozygosity for a partial deletion of apoprotein A- V signal peptide results in intracellular missorting of the protein and chylomicronemia in a breast-fedinfant. Atherosclerosis 233, 97-103 (2014).
- 24. Nilsson, S. K., et al. Apolipoprotein A- V; a potent triglyceride reducer. Atherosclerosis 219, 15-21 (2011).
- 25. Peterfy, M. Lipase maturation factor 1: a lipase chaperone involved in lipid metabolism. Biochim. Biophys. Acta 1821, 790-794 (2012).
- Doolittle MH, Ehrhardt N, Péterfy M. Lipase maturation factor 1: structure and role in lipase folding and assembly. Curr Opin Lipidol. 21(3):198-203 (2010).
 Matarazzo L, et al. Successful fenofibrate therapy for severe and persistent hypertriglyceridemia in a boy with cirrhosis and glycerol-3-phosphate dehydrogenase 1 deficiency. JIMD Rep. 54: 25-31 (2010).
- 28. Li T, Guo W, Zhou Z. Adipose triglyceride lipase in hepatic physiology and pathophysiology. Biomolecules. 12: 1-17 (2022).
- 29. Zhao Y, et al. Apolipoprotein E is the major physiological activator of lecithin-cholesterol acyltransferase (LCAT) on apolipoprotein B lipopro-teins. Biochemistry. 25;44(3):1013-25 (2005).
- 30. Marais AD. Apolipoprotein E in lipoprotein metabolism, health and cardiovascular disease. Pathology. 51: 165-176 (2019).
- 31. Hegele RA, et al. Rare dyslipidaemias, from phenotype to genotype to management: a European Atherosclerosis Society task force consensus statement Lancet Diabetes &Endocrinology. 8:50-67 (2020).
- 32. Dron JS, et al. Loss-of-Function CREB3L3 Variants in Patients With Severe Hypertriglyceridemia. Arterioscler Thromb Vasc Biol. 40(8):1935-1941 (2020). 33. Hadarits F, et al. Common functional variants of APOA5 and GCKR accumulate gradually in association with triglyceride increase in metabolic syndrome
- patients. Mol Biol Rep. 39(2):1949-55 (2012).
 34. Carrasquilla GD, Christiansen MR, Kilpeläinen TO. The Genetic Basis of Hypertriglyceridemia. Curr Atheroscler Rep. 23: 39. doi:10.1007/s11883-021-00939-y (2021).

List of abbreviations

ANGPTL3, angiopoietin-like 3 protein; ANGPTL4, angiopoietin-like 4 protein; ANGPTL8, angiopoietin-like 8 protein; APO A5, apolipoprotein A5; APO C2, apolipoprotein C2; APO E, apolipoprotein E; C, cholesterol; CREBH, cyclic adenosine monophosphate (cAMP)-responsive element-binding protein H cyclic adenosine monophosphate (cAMP)-responsive element-binding protein H); CREB3L3, CAMP-Responsive Element-Binding Protein-3-Like-3; FCS, familial chylomicronemia syndrome; FFS, free fatty acids; GKCR, glucokinase regulatory protein; HDL, high density lipoprotein. High density lipoprotein; LCAT, lecithin-cholesterol acyltransferase; LDL, low density lipoprotein; PL, lipoprotein 1; TG, triglycerides; VLDL, very low density lipoprotein; WHO, World Health Organization

Swedish Orphan Biovitrum AB SE-112 76 Stockholm, Sweden Visitors: Tomtebodavägen 23A, Solna

© 2024 Swedish Orphan Biovitrum AB (publ) - All rights reserved. PP-23916